If it's not what You are looking for type in the equation solver your own equation and let us solve it.
50t-2t^2=140
We move all terms to the left:
50t-2t^2-(140)=0
a = -2; b = 50; c = -140;
Δ = b2-4ac
Δ = 502-4·(-2)·(-140)
Δ = 1380
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1380}=\sqrt{4*345}=\sqrt{4}*\sqrt{345}=2\sqrt{345}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(50)-2\sqrt{345}}{2*-2}=\frac{-50-2\sqrt{345}}{-4} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(50)+2\sqrt{345}}{2*-2}=\frac{-50+2\sqrt{345}}{-4} $
| 3m-7=3 | | 1/3(4-2h)=-1/4(h+2) | | 8t-9=2t-3 | | 5^-3y=3 | | 2y+7=3y+5 | | 0=15-x/154 | | -/x6=-9 | | 6w-7=5w+1 | | 4^6n-8=1/256 | | 4(10-9y-5y)+9(4y+5)=12 | | X=8=3x=-32 | | 10d+8=4d+38 | | 2^x-(3x+2)^x=1 | | -5x-14=2(2x+3)-9x | | 0=-1.9x+60 | | (8-3n)/3=(6-5n)/6 | | 2x+0=22 | | d^2-18d+81=14 | | |5+3a|=7 | | 9x-(-8)=17 | | -14d-28=-4(d+7)-10d | | 3x-7=29x= | | (P)^3-3p-140=0 | | P^(3)-3p-140=0 | | 14-1/30x(2x)=7-1/30(x) | | v+14=8v | | 14−1/30(2x)=7−1/30(x) | | x÷2+8=6 | | P^3-3p-140=0 | | X3-27x+54=0 | | 4(x+5)=(60-2x)/2 | | u/5=12/15 |